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The inverse Laplace transform of the two- and three-particle Ursell operators are shown to be related to
scattering kernels. For a three-particle system the kernel is identical to Faddeev’s connected kernel. For
well-behaved potentials, these kernels are compact with the consequence that they have a discrete spectrum
and can thus be expressed in terms of discrete spectral representations. This leads to a method for the direct
computation of Ursell operators and the corresponding cluster integrals.@S1063-651X~96!02709-2#

PACS number~s!: 05.20.2y, 03.65.Nk, 03.80.1r, 34.10.1x

I. INTRODUCTION

This paper explores the formal relation between the con-
nected kernel of Faddeev@1# and the three-particle Ursell
operator of statistical mechanics@2,3#. The convergence
properties of the Faddeev kernel thus leads to an alternate
method of evaluating the quantum mechanical cluster inte-
grals of equilibrium statistical mechanics. While the present
paper is restricted to three-particle systems and Boltzmann
statistics, it is expected that this correspondence between
connected scattering kernels and Ursell operators can be gen-
eralized to the higher order Ursell operators and to quantum
statistics.

The main purpose of such a formulation is to provide a
practical method for the quantum mechanical evaluation of
the equation of state of a nonideal gas system whose stan-
dard starting point is the cluster expansion of the grand par-
tition function, a classic approach developed by Ursell@2#
and Mayer@4# and later generalized to quantum mechanics
by Kahn and Uhlenbeck@5#. Alternately, Dashen, Ma, and
Bernstein @6# used a Feynman-Dyson expansion for the
grand partition function and their use of Feynman diagrams
allows a separation between a ‘‘dynamical part’’ and a ‘‘sta-
tistical part.’’ A modern scattering theory formulation of a
monomer-dimer mixture has been given by Osborn@7#. His
method relies on the asymptotic completeness theorem of the
multichannel scattering theory. An elegant two-Hilbert space
formalism for the multispecies fugacity expansion has been
provided by Hoffman and Evans@8#. Their formalism is
based on the method used in a rigorous reactive quantum
kinetic theory developed by Hoffman, Kouri, and their co-
workers@9#.

The first quantum mechanical calculation of the second
virial coefficient was due to Beth and Uhlenbeck@10#, ex-
pressed in terms of scattering phase shifts. Since the phase
shifts are related to theS matrix, the Jost function, and the
on-shellT matrix, various alternative expressions of this re-
sult have been reported@11–13#. Smith @14# relates the en-
ergy derivative of the phase shift to the time delay and gen-
eralized this to time delay matrices for general inelastic
collisions. Thus the pair particle Ursell operator can be ex-
pressed in terms of a time delay. Higher order Ursell opera-
tors can also be expressed in terms of a time delay formalism
@15#, for example, the generalS-matrix formulation of equi-
librium statistical mechanics@6# is basically in terms of the

time delay. The most elegant formalism for the virial coeffi-
cients using the time delay method has been given by Osborn
@7#. When bound states exist, his work expresses the corre-
lations of dimer-dimer, monomer-dimer, and monomer-
monomer in terms of the corresponding time delays on an
equal footing. Despite the various developments, the evalu-
ation of the second virial coefficient is nontrivial except for a
limited class of simple potentials@16#. It is even more diffi-
cult to evaluate higher order virials because, for example,
these depend on evaluating the fullSmatrix for all energies.
Therefore reliable alternate numerical methods are indispens-
able for solving realistic problems. The Hilbert-Schmidt
method is an extremely powerful technique for solving quan-
tum mechanical two-particle scattering problems@17–19#,
however, it has rarely been used in formal statistical mechan-
ics. Necessarily, calculating higher order virial coefficients
rests on three- or more body quantum scattering theory,
where the Faddeev-type analysis is obligatory. In this paper
the Faddeev analysis is employed to formulate a Hilbert-
Schmidt representation of the three-particle Ursell operator.

The resulting formalism is in a form ready for direct com-
putation. An example of such a computation, for the pair-
particle Ursell operator, was considered@20# earlier.

A discrete basis representation of Ursell operators is pre-
sented in Sec. II. Ursell operators are first expressed in terms
of various resolvents by a Laplace transform@21#. Operator
theory implies that certain kernel operators are compact so
that a discrete basis representation can be introduced. In the
case of three particles, the Faddeev analysis is utilized to
obtain a discrete basis expansion of the corresponding Ursell
operator. A brief discussion is given in Sec. III.

II. DISCRETE BASIS REPRESENTATION
OF URSELL OPERATORS

In this section a discrete basis representation for the two-
and three-particle Ursell operators is formulated. This section
is divided into two parts, the first dealing with the two-
particle Ursell operator and the second with the three-particle
Ursell operator.

A. Two-particle Ursell operator

In thermal equilibrium the correlations between two par-
ticles is given by the Ursell operator
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U ~2!5e2bH~2!
2e2bH0

~2!
. ~1!

Here the full and free HamiltoniansH (2) andH0
(2) for rela-

tive motion are self-adjoint operators acting on the~relative
motion! pair Hilbert spaceH(2) with both their spectra being
absolutely continuous on the positive real axis and there is
the added possibility that the spectrum ofH (2) is also singu-
lar on the negative real axis, corresponding to a finite number
of bound states. As long as the potentialV[H (2)2H0

(2) is
well behaved,U (2) is a trace class operator@22,23#

TruU ~2!u,`. ~2!

U (2) is related to the interacting and free resolvent operators
R(2) andR0

(2) ,

R~2![
1

z2H ~2! , R0
~2![

1

z2H0
~2! , ~3!

by the Laplace transform@21#

U ~2!5
1

2p i RCe2bzR~2!~z!dz, ~4!

expressed as a contourC counterclockwisely encircling the
spectrum ofH (2), of the difference of the resolvent operators

R~2!~z![R~2!2R0
~2!5

1

z2H ~2! 2
1

z2H0
~2! . ~5!

The corresponding resolvents (z2H (2))21 and (z2H0
(2))21

are bounded operators onH(2) for all complexz except on
the spectra of their respective Hamiltonians. As a conse-
quence, the difference in resolventsR(2)(z) is defined on the
complexz plane excluding the spectrum ofH (2). An advan-
tage ofR(2) over the individual resolvent operatorsR(2) and
R0
(2) is that, for reasonable potentials, the operatorR(2) is of

trace class, whereasR(2) andR0
(2) are not.

It is easy to show that the difference in resolventsR(2) is
related to the kernel

K ~2!~z![~z2H0
~2!!21V, ~6!

by

R~2!~z!5S 1

12K ~2!~z! DK ~2!~z!S 1

z2H0
~2!D . ~7!

Moreover the kernelK (2)(z) is, for A2mz5x1 iy not on the
real axis and for square integrable local potentials, a Hilbert-
Schmidt class operator@24,25#. This follows from the fact
that the operatorK (2)(z)†K (2)(z) has a finite trace, namely,
for a three dimensional system,

TrK ~2!~z!†K ~2!~z!5E ^puV2up&

3
4m2

@~x2p!21y2#@~x1p!21y2#
dp,`,

~8!

providedV is a square integrable local potential, namely,

^puV2up&5
1

h3E V~r !2dr ~9!

is finite. As a consequence,K (2)(z) is a compact operator
and its spectrum discrete@25#, having eigenvalueshn(z),
and a set of biorthonormal rightuzn(z)& and left ^jn(z)u
eigenvectors indexed byn,

K ~2!~z!uzn~z!&5hn~z!uzn~z!&, ~10!

^jn~z!uK ~2!~z!5^jn~z!uhn~z!, ~11!

^jm~z!uzn~z!&5dmn , ~12!

with the eigenvalues satisfying

(
n

uhn~z!u2,`. ~13!

The proof of the compactness ofK (2)(z) can be extended to
the real axis, see, e.g., Ref.@26#, by showing that the sym-
metrized kernelV1/2(z2H0

(2))21V1/2 is a Hilbert-Schmidt
operator.

It follows thatR(2)(z) also has a representation in terms
of a discrete basis

R~2!~z!5(
n

uzn~z!&
hn~z!

12hn~z!
^jn~z!u

1

z2H0
~2! . ~14!

Thus one arrives at a discrete basis representation for the pair
Ursell operator

U ~2!5(
n

1

2p i RCe2bzuzn~z!&
hn~z!

12hn~z!
^jn~z!u

1

z2H0
~2! dz.

~15!

B. Three-particle Ursell operator

At thermal equilibrium three-particle correlations are de-
scribed by the three-body Ursell operator

U ~3!5e2bH~3!
2e2bH0

~3!
2(

a
~e2bHa

~3!
2e2bH0

~3!
!.

~16!

Here the full three-body Hamiltonian for relative motion is
defined as

H ~3![H0
~3!1V~3!. ~17!

H0
(3) is the kinetic energy operator for the relative motion of

three particles andV(3) is the pairwise additive potential

V~3![(
a

Va , ~18!

given in terms of the pair potentials

V1[V23, V2[V13, V3[V12 ~19!
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labeled in a convenient~and standard! manner for the subse-
quent discussion. Arrangement channel HamiltoniansHa

(3)

are defined according to

Ha
~3![H0

~3!1Va . ~20!

The three-body Hamiltonians are self-adjoint operators act-
ing on the relative motion Hilbert spaceH(3) @the center of
mass motion is assumed to have been separated off#. The
spectrum ofH (3) is absolutely continuous on the positive real
axis corresponding to three-particle scattering, and possibly
on the part of the negative real axis corresponding to two-
fragment scattering subsystems@with one of the pair of par-
ticles in a bound state if such exist#. As well, the spectrum of
H (3) can also be singular to the left of the two-particle
threshold, corresponding to three-particle bound states.

The full three-body resolvent operator is defined as

R~3!~z!5
1

z2H ~3! , ~21!

wherez is a parameter in the complex energy plane. As a
function of z, R(3)(z) is well defined in the whole complex
energy plane excluding the spectrum of the Hamiltonian
H (3), specifically off the real axis and to the left~more nega-
tive than! the lowest bound state energy. Similarly, the three-
body channel resolvent operators are defined as

Ra
~3!~z!5

1

z2Ha
~3! . ~22!

In terms of these resolvent operators and the Laplace trans-
form, the three-body Ursell operator can be expressed as

U ~3!5
1

2p i RCe2bzR~3!~z!dz, ~23!

where the contourC encircles the spectra of the full three-
body Hamiltonian in a counterclockwise manner and the
quantityR(3)(z) is the combination of resolvents

R~3!~z![R~3!~z!2R0
~3!~z!2(

a
@Ra

~3!~z!2R0
~3!~z!#.

~24!

R(3) has been shown to be a connected operator@27#. Actu-
ally R(3) is also related to the Faddeev kernel of the three-
body transition operator, which is a compact operator, a nec-
essary functional property for the validity of a representation
in terms of a discrete basis. The Faddeev technique of three-
body quantum scattering is utilized in the following to estab-
lish this relation between the operatorR(3)(z) and the Fad-
deev kernel.

Faddeev found that the three-body~on-shell! Lippmann-
Schwinger equation@28# does not have a unique solution
because the homogeneous equations admit two-body scatter-
ing state solutions. The Lippmann-Schwinger equation is
thus equivalent to the three-body Schro¨dinger equation only
for energies below the lowest two-particle threshold. At
higher energies the kernel of the Lippmann-Schwinger equa-
tion becomes noncompact so that the equation is no longer of

the Fredholm type and the standard theory of integral equa-
tions cannot be applied. In spite of these difficulties, a three-
body transition operator can still be defined in a form analo-
gous to the two-body transition operator, namely,

T~3!~z![V~3!1V~3!R~3!~z!V~3!. ~25!

However,T(3)(z) does not give the scattering cross section
in the same manner as does the two-body transition operator.
The three-body resolvent operator can be written in the fol-
lowing alternate ways:

R~3!~z!5Ra
~3!~z!1Ra

~3!~z!VaR~3!~z! ~26!

5Ra
~3!~z!1R~3!~z!VaRa

~3!~z! ~27!

5R0
~3!~z!1R0

~3!~z!T~3!~z!R0
~3!~z!,

~28!

where

Va[V~3!2Va . ~29!

R(3)(z) is more singular than the transition operatorT(3)(z)
because of the presence ofR0

(3)(z). In graph theory language
@29#, Eq. ~26! has disconnected diagrams which give rise to
d functions in momentum representation.

Faddeev separated the transition operator into three parts
T(3)5(aTa

(3)(z), satisfying the set of equations

Ta
~3!~z![Va1VaR0

~3!~z!T~3!5ta
~3!~z!1(

b
~12da,b!

3ta
~3!~z!R0

~3!~z!Tb
~3!~z!, ~30!

whereta
(3)(z) is a two-body transition operator in the three-

particle space

ta
~3!~z![Va1VaRa

~3!~z!Va ~31!

5Va1VaR0
~3!~z!ta

~3!~z! ~32!

5@12VaR0
~3!~z!#21Va . ~33!

In an analogous manner the resolvent operator can be di-
vided up according to

R~3!~z!2R0
~3!~z!5(

a
R0

~3!~z!Ta
~3!~z!R0

~3!~z! ~34!

5(
a

Ga
~3!~z!. ~35!

TheGa
(3)(z) are Faddeev’s resolvent operators

Ga
~3!~z![R0

~3!~z!Ta
~3!~z!R0

~3!~z! ~36!

5R0
~3!~z!ta

~3!~z!R0
~3!~z!1(

b
Kab

~3!~z!Gb
~3!~z!

~37!

5Ra
~3!~z!2R0

~3!~z!1(
b

Kab
~3!~z!Gb

~3!~z!, ~38!
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with kernelKab
(3)(z) defined as

Kab
~3!~z!5R0

~3!~z!ta
~3!~z!~12da,b!. ~39!

The last form forGa
(3) Eq. ~38!, is obtained from Eq.~37!

using theRa
(3) analog of Eq.~34!, there being only one po-

tential in this case. Using Eqs.~24!, ~35!, and ~38!,
R(3)(z) can be written as

R~3!~z!5(
a

(
b

Kab
~3!~z!Gb

~3!~z!. ~40!

On interpretingGa
(3)(z) and ta

(3)(z) as components of the
channel space vectorsG andt, together withKab

(3)(z) being a
matrixK , this in addition to these quantities being operators
on the Hilbert space of relative motion for the three particles,
then Eq.~37! can be written as the matrix equation

G5R0
~3!tR0

~3!1KG , ~41!

whose formal solution is

G5~12K !21R0
~3!tR0

~3! . ~42!

As a consequence,R(3)(z) is given by

R~3!~z!5(
a

@KG #a5(
a,b

S K

12K
R0

~3!~z!tR0
~3!~z! D

ab

.

~43!

The compactness of the operatorR(3)(z) is established
because the Faddeev kernelK is compact. Technically this
has been shown@1,19# by demonstrating that the square op-
eratorK2 is an operator of Hilbert-Schmidt class, namely,

(
a

Tr@K2†K2#aa,`. ~44!

Necessarily this requires both the quantum trace Tr and the
channel trace(a .

As a consequence of being compact~or completely con-
tinuous!, K has only a discrete spectrum. Moreover,@1
2K #21 exists@30# and is a meromorphic function ofz. Thus
K has a biorthogonal set of left and right eigenfunctions and
eigenvalues

Kuzn
~3!~z!l5hn

~3!~z!uzn
~3!~z!l, ~45!

kjn
~3!~z!uK~z!5kjn

~3!~z!uhn
~3!~z!, ~46!

kjm
~3!~z!uzn

~3!~z!l5dmn . ~47!

Note that the inner product, operator, ket and bra in this
development act both in the relative motion of the three par-
ticles and in the channel space. The eigenvalueshn

(3)(z) sat-
isfy

(
n

uhn
~3!~z!u4,`. ~48!

R(3) thus admits the expansion

R~3!~z!5(
n

(
a,b

FUzn~3!~z!l
hn

~3!~z!

12hn
~3!~z!

kjn
~3!~z!zG

ab

3R0
~3!~z!tb

~3!~z!R0
~3!~z!. ~49!

This leads to the desired discrete representation for the three-
particle Ursell operator

U ~3!5
1

2p i RCe2bz(
n

(
a,b

FUzn~3!~z!l
hn

~3!~z!

12hn
~3!~z!

kjn
~3!~z!UG

ab

3R0
~3!~z!tb

~3!~z!R0
~3!~z!dz. ~50!

III. DISCUSSION

It is seen, for the cases that have been explored, that the
connected Ursell operatorsU (2) andU (3), have a one-to-one
correspondence with Hilbert-Schmidt class operators through
a Laplace transform. It is believed that this is also true for the
higher order Ursell operatorsU (4), U (5), etc. Therefore
U (4) may be closely related to the Yakubovsky equations
@31#. It is well known that quantum mechanical scattering
theories written in terms of integral equations for four and
more particle systems are extremely complicated@31# be-
cause the kernels may be unconnected. The present study
implies that it may be possible to have a systematic proce-
dure for obtaining Hilbert-Schmidt class kernels for the re-
solvent operators associated with the higher order Ursell op-
erators U (n). Furthermore, the connected graphs of the
Ursell-Mayer expansion@3# may have a one-to-one corre-
spondence with the connected diagrams of Faddeev for four
and more particles.

The Hilbert-Schmidt method has been widely used in
two-body quantum scattering@17–19# to evaluate both scat-
tering wave functions and collision cross sections. The Fad-
deev analysis has paved the way for applying the same
method to three and more particle scattering@32,33#. The
method provides a powerful representation both conceptually
and computationally. However, it has hardly been used in
formal statistical theory, as far as the authors know. Here a
general formalism for the Hilbert-Schmidt representation of
low order Ursell operators has been presented. The formal-
ism may have important applications. A first and most im-
portant application is that it provides a convenient starting
point for the practical calculation of the equation of state
~virial coefficients!, which was pursued, for the second virial
coefficient, in an earlier paper@20#. A second application is
the possibility of establishing generalizations of Levinson’s
theorem for two- and more particle scattering@34# by the
resolvent method. The conventionalS-matrix phase shift
does not work in the case of three-body scattering since
three-body breakup collisions admit no phase-shift descrip-
tion.

Gibson @35#, Baumgartl@11#, and Reiner@36# have ap-
plied the Faddeev results to calculate the third virial coeffi-
cient. Gibson expresses the third virial coefficient in terms of
Faddeev’sT matrix. Baumgartl treats a part of the third virial
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coefficient in terms of a two-particle scattering amplitude,
whereas Reiner’s result is more inclusive. Since none of
these authors had considered a general Hilbert-Schmidt rep-
resentation for the evaluation of the virial coefficients, the
present approach introduces a different and hopefully effec-
tive means for that evaluation.
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